Lycium barbarum polysaccharide inhibits ischemia-induced autophagy by promoting the biogenesis of neural stem cells-derived extracellular vesicles to enhance the delivery of miR-133a-3p

枸杞多糖通过促进神经干细胞来源的细胞外囊泡的生物生成来增强 miR-133a-3p 的递送,从而抑制缺血诱导的自噬

阅读:4
作者:Rong Li #, Wenjie Duan #, Tingle Feng, Chenyang Gu, Qiankun Zhang, Jun Long, Shiying Huang, Lukui Chen

Background

Neural stem cell-derived extracellular vesicles (NSC-EVs) mediated endogenous neurogenesis determines a crucial impact on spontaneous recovery after stroke. Here, we checked the influence of Lycium barbarum polysaccharide (LBP) on the biogenesis of NSC-EVs and then focused on studying mechanisms of LBP in ameliorating ischemic stroke outcome.

Conclusion

LBP activated AMPK/mTOR signaling pathway by increasing the enrichment and transfer of miR-133a-3p in NSC-EVs to inhibit stroke-induced autophagy activity.

Methods

LBP was prepared to precondition NSCs and isolate EVs. MCAO models and primary NSCs were administrated to evaluate the therapeutic effect. RT-PCR, western blot, flow cytometry, and immunofluorescence techniques were performed to explore the mechanism.

Results

LBP pretreatment increased the production of NSC-EVs and improved the neuroprotective and recovery effects of NSC-EV in ischemic stroke mice. LBP-pretreated NSC-EV in a dose-dependent manner substantially reduced neuronal death compared with NSC-EV. Screening of the signaling cascade involved in the interaction between NSC-EV and neurons revealed that AMPK/mTOR signaling pathway inhibited autophagic activity in neurons receiving either treatment paradigm. NSC-EVs but not EVs collected from NSCs pretreated with the anti-miR-133a-3p oligonucleotide reduced cell death, whereas the anti-oligonucleotide promoted autophagy activity and cell death by modulating AMPK/mTOR signaling in OGD-induced primary neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。