Bisphenol A Alters the Levels of miRNAs That Directly and/or Indirectly Target Neuropeptide Y in Murine Hypothalamic Neurons

双酚 A 改变小鼠下丘脑神经元中直接和/或间接靶向神经肽 Y 的 miRNA 水平

阅读:10
作者:Kimberly W Y Mak, Wenyuan He, Neruja Loganathan, Denise D Belsham

Abstract

The hypothalamus is a vital regulator of energy homeostasis. Orexigenic neuropeptide Y (NPY) neurons within the hypothalamus can stimulate feeding and suppress energy expenditure, and dysregulation of these neurons may contribute to obesity. We previously reported that bisphenol A (BPA), an endocrine disruptor with obesogenic properties, alters Npy transcription in hypothalamic neurons by inducing oxidative stress. We hypothesized that hypothalamic microRNAs (miRNAs), a class of small non-coding RNAs, could directly regulate Npy gene expression by binding the 3' untranslated region (UTR). Five predicted Npy-targeting miRNA candidates were uncovered through TargetScan and were detected in Npy-expressing hypothalamic neuronal cell models and hypothalamic neuronal primary cultures. BPA dysregulated the expression of a number of these hypothalamic miRNAs. We examined the effects of putative Npy-targeting miRNAs using miRNA mimics, and we found that miR-143-3p, miR-140-5p, miR-29b-1-5p, and let-7b-3p altered Npy expression in the murine hypothalamic cell lines. Importantly, miR-143-3p targets the mouse Npy 3' UTR, as detected using a luciferase construct containing the potential 3' UTR binding sites. Overall, this study established the first hypothalamic miRNA that directly targets the 3' UTR of mouse Npy, emphasizing the involvement of miRNAs in the NPY system and providing an alternative target for control of NPY levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。