Functional characterization of key polyketide synthases by integrated metabolome and transcriptome analysis on curcuminoid biosynthesis in Curcuma wenyujin

通过综合代谢组和转录组分析对姜黄素生物合成中关键聚酮化合物合酶的功能进行表征

阅读:8
作者:Rong Chen, Tianyuan Hu, Ming Wang, Yuhan Hu, Shu Chen, Qiuhui Wei, Xiaopu Yin, Tian Xie

Abstract

Leaf and tuber extracts of Curcuma wenyujin contain a mixture of curcuminoids. However, the curcuminoid constituents and their molecular mechanisms are poorly understood, and the relevant curcumin synthases remain unclear. In this study, we comprehensively compared the metabolite profiles of the leaf and tuber tissues of C. wenyujin. A total of 11 curcuminoid metabolites were identified and exhibited differentially changed contents in the leaf and tuber tissues. An integrated analysis of metabolomic and transcriptomic data revealed the proposed biosynthesis pathway of curcuminoid. Two candidate type Ⅲ polyketide synthases (PKSs) were identified in the metabolically engineering yeasts, indicating that CwPKS1 and CwPKS2 maintained substrate and product specificities. Especially, CwPKS1 is the first type Ⅲ PKS identified to synthesize hydrogenated derivatives of curcuminoid, dihydrocurcumin and tetrehydrocurcumin. Interestingly, the substitution of the glycine at position 219 with aspartic acid (G219D mutant) resulted in the complete inactivation of CwPKS1. Our results provide the first comparative metabolome analysis of C. wenyujin and functionally identified type Ⅲ PKSs, giving valuable information for curcuminoids biosynthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。