Gene based markers improve precision of genome-wide association studies and accuracy of genomic predictions in rice breeding

基于基因的标记提高了全基因组关联研究的精度和水稻育种中基因组预测的准确性

阅读:8
作者:Chandrappa Anilkumar #, T P Muhammed Azharudheen #, Rameswar Prasad Sah #, Nagenahalli Chandrappa Sunitha, Basavantraya N Devanna, Bishnu Charan Marndi, Bhaskar Chandra Patra

Abstract

It is hypothesized that the genome-wide genic markers may increase the prediction accuracy of genomic selection for quantitative traits. To test this hypothesis, a set of candidate gene-based markers for yield and grain traits-related genes cloned across the rice genome were custom-designed. A multi-model, multi-locus genome-wide association study (GWAS) was performed using new genic markers developed to test their effectiveness for gene discovery. Two multi-locus models, FarmCPU and mrMLM, along with a single-locus mixed linear model (MLM), identified 28 significant marker-trait associations. These associations revealed novel causative alleles for grain weight and pleiotropic associations with other traits. For instance, the marker YD91 derived from the gene OsAAP3 on chromosome 1 was consistently associated with grain weight, while the gene has a significant effect on grain yield. Furthermore, nine genomic selection methods, including regression-based and machine learning-based models, were used to predict grain weight using a leave-one-out five-fold cross-validation approach to optimize the genomic selection model with genic markers. Among nine prediction models, Kernel Hilbert Space Regression (RKHS) is the best among regression-based models, and Random Forest Regression (RFR) is the best among machine learning-based models. Genomic prediction accuracies with and without GWAS significant markers were compared to assess the effectiveness of markers. The rapid decreases in prediction accuracy upon dropping GWAS significant markers indicate the effectiveness of new genic markers in genomic selection. Apart from that, the candidate gene-based markers were found to be more effective in genomic selection programs for better accuracy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。