Dephosphorylation of beta-arrestin 1 in glioblastomas

胶质母细胞瘤中 β-arrestin 1 的去磷酸化

阅读:4
作者:James W Mandell, George Glass, Erwin P Gianchandani, Corinne N Locke, Samson Amos, Thomas David Bourne, David Schiff, Jason A Papin

Abstract

Beta-Arrestins act as signal terminators for G protein-coupled receptors; they have also been implicated as scaffolding proteins for Src and mitogen-activated protein kinase signaling pathways and transactivators of receptor tyrosine kinases, suggesting their possible role in development and oncogenic signaling. Dephosphorylation of serine 412 is necessary for Src and mitogen-activated protein kinase transactivation. We hypothesized that altered beta-arrestin 1 phosphorylation and activation status could play a role in gliomagenesis. Using monoclonal anti-phospho-(serine 412)- and total beta-arrestin 1 antibodies, we performed immunohistochemistry on 126 human glioma samples and 7 nonneoplastic controls and Western blot analysis on 5 glioblastomas and 5 nonneoplastic controls. We found high constitutive beta-arrestin 1 phosphorylation in nonneoplastic brain tissue, particularly in neurons and neuropil. Most Grade II and III gliomas retained high beta-arrestin 1 phosphorylation. By contrast, most of the glioblastoma samples (58/81) showed nearly complete beta-arrestin 1 dephosphorylation by immunohistochemistry and decreased relative phosphorylation by Western blot. Expression of constitutively activated epidermal growth factor receptor vIII in U251 cells caused decreased beta-arrestin 1 phosphorylation without altering total beta-arrestin 1 levels. These results suggest that beta-arrestin 1 dephosphorylation/inactivation is associated with aspects of the malignant behavior of glioblastomas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。