Reduced Cathepsin L expression and secretion into the extracellular milieu contribute to lung fibrosis in systemic sclerosis

组织蛋白酶 L 表达减少和分泌到细胞外环境导致系统性硬化症肺纤维化

阅读:5
作者:Joe E Mouawad, Shailza Sharma, Ludivine Renaud, Joseph M Pilewski, Satish N Nadig, Carol Feghali-Bostwick

Conclusions

Our findings identify CTSL as a protein protective against lung fibrosis via its activation of antifibrotic ES, and whose expression in SSc pLFs and lung tissues is suppressed. Identifying strategies to boost CTSL endogenous levels in SSc patients could serve as a viable therapeutic strategy.

Methods

Fibrosis was induced experimentally using TGF-β in vitro, in primary human lung fibroblasts (pLFs), and ex vivo, in human lung tissues. ES and CTSL expression was quantified using ELISA, RT-qPCR, immunoblotting or immunofluorescence. Recombinant NC1-FLAG peptide was used to assess CTSL cleavage activity. CTSL expression was also compared between SSc vs normal (NL)-derived pLFs and lung tissues.

Results

ES levels were significantly reduced in media conditioned by TGF-β-induced pLFs. TGF-β-stimulated pLFs significantly reduced expression and secretion of CTSL into the extracellular matrix (ECM). CTSL was also sequestered in its inactive form into extracellular vesicles, further reducing its availability in the ECM. Media conditioned by TGF-β-induced pLFs showed reduced cleavage of NC1-Flag and reduced release of the antifibrotic ES fragment. SSc-derived pLFs and lung tissues expressed significantly lower levels of CTSL compared with NL. Conclusions: Our findings identify CTSL as a protein protective against lung fibrosis via its activation of antifibrotic ES, and whose expression in SSc pLFs and lung tissues is suppressed. Identifying strategies to boost CTSL endogenous levels in SSc patients could serve as a viable therapeutic strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。