Abstract
S100A4 represents an important member of the S100 family of small calcium-binding proteins. Increased expression of S100A4 has been observed in chronic inflammatory and autoimmune diseases, such as idiopathic inflammatory myopathies. The majority of studies of S100A4 are focused on cancer research; however, the oncogenic roles of S100A4 in epithelial ovarian cancer (EOC) remain largely unexplored. In this study, S100A4 expression is significantly up-regulated in ovarian cancer and associated with the clinical stage of EOC patients. Attenuation of S100A4 expression results in decreased cell mobility and metastatic capacity, whereas overexpression of S100A4 enhanced the invasive ability of EOC cells. Then by an integrated informatics analysis and luciferase reporter assay, we identify that miR-296 is a critical upstream regulator of S100A4. In addition, deregulated miR-296/S100A4 axis facilitates epithelial-mesenchymal transition (EMT) process as demonstrated by altered expression of EMT-related markers. In conclusion, our study reveals that deregulated miR-296/S100A4 promotes tumor progression in EOC, and provides evidence that miR-296/S100A4 axis-related signaling may represent a potential target for EOC therapy.
