Tbx1 modulates endodermal and mesodermal differentiation from mouse induced pluripotent stem cells

TBX1调节小鼠诱导多能干细胞的内胚层和中胚层分化

阅读:6
作者:Yuan Yan, Min Su, Yinhong Song, Yong Tang, Xiuchun Cindy Tian, Debra Rood, Laijun Lai

Abstract

The T-box transcriptional factor (Tbx) family of transcriptional factors has distinct roles in a wide range of embryonic differentiation or response pathways. Tbx1, a T-box transcription factor, is an important gene for the human congenital disorder 22q11.2 deletion syndrome. Induced pluripotent stem cell (iPSC) technology offers new opportunities for both elucidation of the pathogenesis of diseases and the development of stem-cell-based therapies. In this study, we generated iPSCs from Tbx1(-/-) and Tbx1(+/+) fibroblasts and investigated the spontaneous differentiation potential of iPSCs by detailed lineage analysis of the iPSC-derived embryoid bodies. Undifferentiated Tbx1(-/-) and Tbx1(+/+) iPSCs showed similar expression levels of pluripotent markers. The ability of the Tbx1(-/-) iPSCs to generate endodermal and mesodermal lineages was compromised upon spontaneous differentiation into embryonic bodies. Restoration of Tbx1 expression in the Tbx1(-/-) iPSCs to normal levels using an inducible lentiviral system rescued these cells from the potential of defective differentiation. Interestingly, overexpression of Tbx1 in the Tbx1(-/-) iPSCs to higher levels than in the Tbx1(+/+) iPSCs again led to a defective differentiation potential. Additionally, we observed that expression of fibroblast growth factor (FGF) 10 and FGF8 was downregulated in the Tbx1(-/-) iPSC-derived cells, which suggests that Tbx1 regulates the expression of FGFs. Taken together, our results implicated the Tbx1 level as an important determinant of endodermal and mesodermal lineage differentiation during embryonic development.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。