Transcription of a productively rearranged Ig VDJC alpha does not require the presence of HS4 in the IgH 3' regulatory region

高效重排的 Ig VDJC alpha 的转录不需要 IgH 3' 调控区中 HS4 的存在

阅读:14
作者:Buyi Zhang, Adrienne Alaie-Petrillo, Maria Kon, Fubin Li, Laurel A Eckhardt

Abstract

V gene assembly, class switch recombination, and somatic hypermutation are gene-modifying processes essential to the development of an effective Ab response. If inappropriately applied, however, these processes can mediate genetic changes that lead to disease (e.g., lymphoma). A series of control elements within the Ig H chain (Igh) locus has been implicated in regulating these processes as well as in regulating IgH gene transcription. These include the intronic enhancer (Emu) and several elements at the 3' end of the locus (hs1,2, hs3a, hs3b, and hs4) known collectively as the 3' regulatory region. Although it is clear that the Emu plays a unique role in V gene assembly, it has not been established whether there are unique functions for each element within the 3' regulatory region. In earlier studies in mice and in mouse cell lines, pairwise deletion of hs3b and hs4 had a dramatic effect on both class switch recombination and IgH gene transcription; deletion of an element almost identical with hs3b (hs3a), however, yielded no discernible phenotype. To test the resulting hypothesis that hs4 is uniquely required for these processes, we induced the deletion of hs4 within a bacterial artificial chromosome transgene designed to closely approximate the 3' end of the natural Igh locus. When introduced into an Ig-secreting cell line, an Igalpha transcription unit within the bacterial artificial chromosome was expressed efficiently and the subsequent deletion of hs4 only moderately affected Igalpha expression. Thus, hs4 does not play a uniquely essential role in the transcription of a productively rearranged Ig VDJCalpha transcription unit.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。