A loss of primary cilia by a reduction in mTOR signaling correlates with age-related deteriorations in condylar cartilage

mTOR 信号减少导致的初级纤毛损失与髁突软骨的年龄相关性退化相关

阅读:6
作者:Megumi Kitami, Masaru Kaku, Lay Thant, Takeyasu Maeda

Abstract

Age-related deterioration of condylar cartilage is an etiological factor in temporomandibular joint-osteoarthritis (TMJ-OA). However, its underlying mechanism remains unknown. Therefore, we examined age-related changes and the relationship between mTOR signaling and primary cilia in condylar cartilage to determine the intrinsic mechanisms of age-related TMJ-OA. Age-related morphological changes were analyzed using micro-computed tomography and safranin O-stained histological samples of the mandibular condyle of C57BL/6J mice (up to 78 weeks old). Immunohistochemistry was used to assess the activity of mTOR signaling, primary cilia frequency, and Golgi size of condylar chondrocytes. Four-week-old mice receiving an 11-week series of intraperitoneal injections of rapamycin, a potent mTOR signaling inhibitor, were used for the histological evaluation of the condylar cartilage. The condylar cartilage demonstrated an age-related reduction in cartilage area, including chondrocyte size, cell density, and cell size distribution. The Golgi size, primary cilia frequency, and mTOR signaling also decreased with age. Rapamycin injections resulted in both diminished cartilage area and cell size, resembling the phenotypes observed in aged mice. Rapamycin-injected mice also exhibited a smaller Golgi size and lower primary cilia frequency in condylar cartilage. We demonstrated that a loss of primary cilia due to a decline in mTOR signaling was correlated with age-related deteriorations in condylar cartilage. Our findings provide new insights into the tissue homeostasis of condylar cartilage, contributing to understanding the etiology of age-related TMJ-OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。