Conclusions
These findings establish that ruxolitinib inhibits IFNγ-induced expression of SG-MSC immunomodulatory markers and chemokines. Ruxolitinib also reverses IFNγ-induced CD4+ T cell chemotaxis, through inhibition of CXCL9, -10 and -11. Because IFNγ is higher in SjD than control SGs, we have identified SG-MSCs as a plausible pathogenic cell type in SjD. We provide proof of concept supporting further study of ruxolitinib to treat SjD.
Methods
SG-MSCs were isolated from SjD and controls human subjects. SG-MSCs were treated with 10 ng/ml IFNγ +/- 1000 nM ruxolitinib. Experimental methods included flow cytometry, RNA-sequencing, chemokine array, ELISA and transwell chemotaxis experiments.
Results
We found that IFNγ promoted expression of SG-MSC immunomodulatory markers, including HLA-DR, and this expression was inhibited by ruxolitinib. We confirmed the differential expression of CXCL9, CXCL10, CXCL11, CCL2 and CCL7, initially identified with RNA sequencing. SG-MSCs promoted CD4+ T cell chemotaxis when pre-stimulated with IFNγ. Ruxolitinib blocks chemotaxis through inhibition of SG-MSC production of CXCL9, CXCL10 and CXCL11. Conclusions: These findings establish that ruxolitinib inhibits IFNγ-induced expression of SG-MSC immunomodulatory markers and chemokines. Ruxolitinib also reverses IFNγ-induced CD4+ T cell chemotaxis, through inhibition of CXCL9, -10 and -11. Because IFNγ is higher in SjD than control SGs, we have identified SG-MSCs as a plausible pathogenic cell type in SjD. We provide proof of concept supporting further study of ruxolitinib to treat SjD.
