Mitochondrial and cytoskeletal alterations are involved in the pathogenesis of hydronephrosis in ICR/Mlac-hydro mice

线粒体和细胞骨架的改变与 ICR/Mlac-hydro 小鼠肾积水的发病机制有关

阅读:6
作者:Duangnate Isarangkul, Suthep Wiyakrutta, Kanchana Kengkoom, Onrapak Reamtong, Sumate Ampawong

Abstract

The pathogenesis of congenital hydronephrosis in laboratory animals has been studied for many years, yet little is known about the underlying mechanism of this disease. In this study, we investigated a MS-based comparative proteomics approach to characterize the differently expressed proteins between kidney tissue samples of ICR/Mlac-hydro and wild-type mice. Interestingly, proteomic results exhibited several mitochondrial protein alterations especially the up-regulation of 60 kDa heat shock protein (Hsp60), stress-70 protein (GRP75) dysfunction, and down-regulation of voltage-dependent anion-selective channel protein 1 (VDAC-1). The results demonstrated that mitochondrial alteration may lead to inadequate energy-supply to maintain normal water reabsorption from the renal tubule, causing hydronephrosis. Moreover, the alteration of cytoskeleton proteins in the renal tubule, in particular the up-regulation of tubulin beta-4B chain (Tb4B) and N-myc downstream-regulated gene 1 protein (Ndr-1) may also be related due to their fundamental roles in maintaining cell morphology and tissue stability. In addition, cytoskeletal alterations may consequence to the reduction of glyceraldehydes-3-phosphate dehydrogenase (GAPDH), cytoplasmic enzyme, which modulates the capacity of structural proteins. Our findings highlight a number of target proteins that may play a crucial role in congenital hydronephrosis and emphasize that the disorder of mitochondria and cytoskeleton proteins may be involved.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。