Dissociation of DNA damage and mitochondrial injury caused by hydrogen peroxide in SV-40 transformed lung epithelial cells

SV-40转化肺上皮细胞中过氧化氢引起的DNA损伤和线粒体损伤的解离

阅读:10
作者:Yoshihiro Fujii, Katsuyuki Tomita, Hiroyuki Sano, Akira Yamasaki, Yutaka Hitsuda, Ian M Adcock, Eiji Shimizu

Background

Since lung epithelial cells are constantly being exposed to reactive oxygen intermediates (ROIs), the alveolar surface is a major site of oxidative stress, and each cell type may respond differently to oxidative stress. We compared the extent of oxidative DNA damage with that of mitochondrial injury in lung epithelial cells at the single cell level. RESULT: DNA damage and mitochondrial injury were measured after oxidative stress in the SV-40 transformed lung epithelial cell line challenged with hydrogen peroxide (H2O2). Single cell analysis of DNA damage was determined by assessing the number of 8-oxo-2-deoxyguanosine (8-oxo-dG) positive cells, a marker of DNA modification, and the length of a comet tail. Mitochondrial membrane potential, DeltaPsim, was determined using JC-1. A 1 h pulse of H2O2 induced small amounts of apoptosis (3%). 8-oxo-dG-positive cells and the length of the comet tail increased within 1 h of exposure to H2O2. The number of cells with reduced DeltaPsim increased after the addition of H2O2 in a concentration-dependent manner. In spite of a continual loss of DeltaPsim, DNA fragmentation was reduced 2 h after exposure to H2O2.

Conclusion

The data suggest that SV-40 transformed lung epithelial cells are resistant to oxidative stress, showing that DNA damage can be dissociated from mitochondrial injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。