Curcumin's Metabolites, Tetrahydrocurcumin and Octahydrocurcumin, Possess Superior Anti-inflammatory Effects in vivo Through Suppression of TAK1-NF-κB Pathway

姜黄素的代谢物四氢姜黄素和八氢姜黄素通过抑制 TAK1-NF-κB 通路在体内发挥卓越的抗炎作用

阅读:15
作者:Zhen-Biao Zhang, Dan-Dan Luo, Jian-Hui Xie, Yan-Fang Xian, Zheng-Quan Lai, Yu-Hong Liu, Wei-Hai Liu, Jian-Nan Chen, Xiao-Ping Lai, Zhi-Xiu Lin, Zi-Ren Su

Abstract

Curcumin (CUR), a promising naturally occurring dietary compound, is commonly recognized as the potential anti-inflammatory agent. While the application of CUR was hampered by its low stability and poor systemic bioavailability, it has been suggested that the biological activities of CUR are intimately related to its metabolites. In the current investigation, we aimed to comparatively explore the anti-inflammatory effects of tetrahydrocurcumin (THC), octahydrocurcumin (OHC), and CUR, and to elucidate the underlying action mechanisms on experimental mice models of acute inflammation, i.e., xylene-induced ear edema, acetic acid-induced vascular permeability, and carrageenan-induced paw edema. The results showed that THC and OHC exerted significant and dose-dependent inhibitions on the formation of ear edema induced by xylene and paw edema provoked by carrageenan and inhibited the Evans blue dye leakage in peritoneal cavity elicited by acetic acid. Moreover, THC and OHC treatments were more effective than CUR in selectively inhibiting the expression of cyclooxygenase 2 (COX-2) and suppressing nuclear factor-κB (NF-κB) pathways via transforming growth factor β activated kinase-1 (TAK1) inactivation in the carrageenan-induced mouse paw edema model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。