Real-Time Analysis of Calcium Signals during the Early Phase of T Cell Activation Using a Genetically Encoded Calcium Biosensor

使用基因编码钙生物传感器实时分析 T 细胞活化早期的钙信号

阅读:6
作者:Marie Le Borgne, Saravanan Raju, Bernd H Zinselmeyer, Viet T Le, JiaJia Li, Yingxiao Wang, Mark J Miller, Andrey S Shaw

Abstract

Proper T cell activation is promoted by sustained calcium signaling downstream of the TCR. However, the dynamics of calcium flux after stimulation with an APC in vivo remain to be fully understood. Previous studies focusing on T cell motility suggested that the activation of naive T cells in the lymph node occurs in distinct phases. In phase I, T cells make multiple transient contacts with dendritic cells before entering a phase II, where they exist in stable clusters with dendritic cells. It has been suggested that T cells signal during transient contacts of phase I, but this has never been shown directly. Because time-dependent loss of calcium dyes from cells hampers long-term imaging of cells in vivo after antigenic stimulation, we generated a knock-in mouse expressing a modified form of the Cameleon fluorescence resonance energy transfer reporter for intracellular calcium and examined calcium flux both in vitro and in situ. In vitro, we observed transient, oscillatory, and sustained calcium flux after contact with APC, but these behaviors were not affected by the type of APC or Ag quantity, but were, however, moderately dependent on Ag quality. In vivo, we found that during phase I, T cells exhibit weak calcium fluxes and detectable changes in cell motility. This demonstrates that naive T cells signal during phase I and support the hypothesis that accumulated calcium signals are required to signal the beginning of phase II.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。