Electroacupuncture Regulates Endoplasmic Reticulum Stress and Ameliorates Neuronal Injury in Rats with Acute Ischemic Stroke

电针调节急性缺血性中风大鼠内质网应激改善神经元损伤

阅读:9
作者:Ya-Min Zhang, Hong Xu, Su-Hui Chen, Hua Sun

Abstract

Ischemic stroke is a common cause of morbidity, mortality, and disability worldwide. Electroacupuncture (EA) is an effective method for alleviating brain damage after ischemic stroke. However, the underlying mechanism has not been fully elucidated. This study aimed to determine whether endoplasmic reticulum stress (ERS) could contribute to the protective effects of EA in cerebral ischemia/reperfusion injury (CIRI) to provide a rationale for the widespread clinical use of EA. Rats were divided into the sham-operated (sham) group, the CIRI (model) group, and the EA group. Rats in the model group were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by 72 h of reperfusion. Rats with CIRI were treated daily with EA at GV20 and ST36 for a total of 3 days. The Longa scoring system and adhesive removal somatosensory test were applied to evaluate neurological deficits. Then, 2,3,5-triphenyltetrazolium chloride (TTC) staining was performed to measure the infarct volume. Immunofluorescence staining for NeuN and GFAP and terminal deoxynucleotidyl transferase- (TdT-) mediated dUTP nick-end labeling (TUNEL) staining were performed to detect apoptotic cells in brain tissue. Immunohistochemistry, quantitative real-time polymerase chain reaction (qPCR), and western blotting were used to measure the levels of ERS indicators (GRP78, CHOP/GADD153, p-eIF2α, and caspase 12). The results showed that EA significantly reduced the cerebral infarct volume, improved neurological function, and inhibited neuronal apoptosis. In the EA group compared with the model group, the mRNA expression levels of GRP78 were significantly increased, and the expression levels of proapoptotic proteins (CHOP/GADD153, p-eIF2α, and caspase 12) were significantly decreased. These results suggest that the possible mechanism by which EA protects cells against neuronal injury in CIRI may involve inhibiting endoplasmic reticulum stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。