Effect of bismuth doping on the crystal structure and photocatalytic activity of titanium oxide

铋掺杂对二氧化钛晶体结构及光催化活性的影响

阅读:4
作者:Dina A Tolan, Ayman K El-Sawaf, Islam G Alhindawy, Mohamed H Ismael, Amal A Nassar, Ahmed M El-Nahas, Mai Maize, Emad A Elshehy, Mohamed E El-Khouly

Abstract

The doping of TiO2 with metals and non-metals is considered one of the most significant approaches to improve its photocatalytic efficiency. In this study, the photodegradation of methyl orange (MO) was examined in relation to the impact of Bi-doping of TiO2. The doped TiO2 with various concentrations of metal was successfully synthesized by a one-step hydrothermal method and characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and UV-vis spectroscopy. The XRD results revealed that the anatase phase, with an average crystallite size of 16.2 nm, was the main phase of TiO2. According to the anatase texture results, it was found that the doping of TiO2 increased the specific surface area for Bi2O3@TiO2 without a change in the crystal structure or the crystal phase of TiO2. Also, XPS analysis confirmed the formation of Ti4+ and Ti3+ as a result of doping with Bi. The activities of both pure TiO2 and Bi-doped TiO2 were tested to study their ability to decolorize MO dye in an aqueous solution. The photocatalytic degradation of MO over Bi2O3@TiO2 reached 98.21%, which was much higher than the 42% achieved by pure TiO2. Doping TiO2 with Bi increased its visible-light absorption as Bi-doping generated a new intermediate energy level below the CB edge of the TiO2 orbitals, causing a shift in the band gap from the UV to the visible region, thus enhancing its photocatalytic efficiency. In addition, the effects of the initial pH, initial pollutant concentration, and contact time were examined and discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。