The cationic amphiphile 3,4-bis(tetradecyloxy)benzylamine inhibits LPS signaling by competing with endotoxin for CD14 binding

阳离子两亲物 3,4-双(十四烷氧基)苄胺通过与内毒素竞争 CD14 结合来抑制 LPS 信号传导

阅读:4
作者:Matteo Piazza, Valentina Calabrese, Chiara Baruffa, Theresa Gioannini, Jerrold Weiss, Francesco Peri

Abstract

The identification of the bacterial endotoxin receptors for innate immunity, most notably the Toll-like receptor 4 (TLR4), has sparked great interest in therapeutic manipulation of innate immune system. We have recently developed synthetic molecules that have been shown to inhibit TLR4 activation in vitro and in vivo. Here we present the synthesis and the biological characterization of a new molecule, the cationic amphiphile 3,4-bis(tetradecyloxy)benzylamine, with a structure strictly related to the previously developed TLR4 modulators. This compound is able to inhibit in a dose-dependent manner the LPS-stimulated TLR4 activation in HEK cells. In order to characterize the mechanism of action of this compound, we investigated possible interactions with the extracellular components that bind and shuttle LPS to TLR4, namely LBP, CD14, and MD-2. This compound inhibited LBP/CD14-dependent LPS transfer to MD-2.TLR4, resulting in reduced formation of a (LPS-MD-2-TLR4)(2) complex. This effect was due to inhibition of the transfer of LPS from aggregates in solution to sCD14 with little or no effect on LPS shuttling from LPS/CD14 to MD-2. This compound also inhibited transfer of LPS monomer from full-length CD14 to a truncated, polyhistidine tagged CD14. Taken together, our findings strongly suggest that this compound inhibits LPS-stimulated TLR4 activation by competitively occupying CD14 and thereby reducing the delivery of activating endotoxin to MD-2.TLR4.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。