Novel application of S-nitrosoglutathione-Sepharose to identify proteins that are potential targets for S-nitrosoglutathione-induced mixed-disulphide formation

S-亚硝基谷胱甘肽-琼脂糖的新应用,用于鉴定 S-亚硝基谷胱甘肽诱导的混合二硫化物形成的潜在靶标蛋白质

阅读:5
作者:P Klatt, E Pineda Molina, D Pérez-Sala, S Lamas

Abstract

Site-specific S-glutathionylation is emerging as a novel mechanism by which S-nitrosoglutathione (GSNO) may modify functionally important protein thiols. Here, we show that GSNO-Sepharose mimicks site-specific S-glutathionylation of the transcription factors c-Jun and p50 by free GSNO in vitro. Both c-Jun and p50 were found to bind to immobilized GSNO through the formation of a mixed disulphide, involving a conserved cysteine residue located in the DNA-binding domains of these transcription factors. Furthermore, we show that c-Jun, p50, glycogen phosphorylase b, glyceraldehyde-3-phosphate dehydrogenase, creatine kinase, glutaredoxin and caspase-3 can be precipitated from a mixture of purified thiol-containing proteins by the formation of a mixed-disulphide bond with GSNO-Sepharose. With few exceptions, protein binding to this matrix correlated well with the susceptibility of the investigated proteins to undergo GSNO- but not diamide-induced mixed-disulphide formation in vitro. Finally, it is shown that covalent GSNO-Sepharose chromatography of HeLa cell nuclear extracts results in the enrichment of proteins which incorporate glutathione in response to GSNO treatment. As suggested by DNA-binding assays, this group of nuclear proteins include the transcription factors activator protein-1, nuclear factor-kappaB and cAMP-response-element-binding protein. In conclusion, we introduce GSNO-Sepharose as a probe for site-specific S-glutathionylation and as a novel and potentially useful tool to isolate and identify proteins which are candidate targets for GSNO-induced mixed-disulphide formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。