HSP27/IL-6 axis promotes OSCC chemoresistance, invasion and migration by orchestrating macrophages via a positive feedback loop

HSP27/IL-6 轴通过正反馈回路调控巨噬细胞,促进 OSCC 化学耐药性、侵袭和迁移

阅读:4
作者:Ying Qi #, Juan Cao #, Mingjing Jiang, Ying Lin, Weibo Li, Bo Li

Abstract

Novel strategies to disrupt tumor progression have emerged from studying the interactions between tumor cells and tumor-associated macrophages (TAMs). However, the molecular mechanisms of interactions between tumor cells and TAMs underlying oral squamous cell carcinoma (OSCC) progression have not been fully elucidated. This study explored the molecular mechanism of the HSP27/IL-6 axis in OSCC chemoresistance, invasion, and migration. Here, we demonstrated the higher expression of HSP27 in OSCC cells. Paracrine HSP27 from OSCC cells enhanced chemoresistance, invasion, migration, and EMT in OSCC by inducing M2 polarization and IL-6 secretion in TAMs. HSP27 and IL-6 established a positive feedback loop between OSCC cells and M2 TAMs. TAMs-derived IL-6 orchestrated OSCC stemness and chemoresistance through upregulating β-catenin and CD44, and enhanced OSCC invasion, migration, and EMT via autocrine HSP27/TLR4 signaling. Collectively, HSP27/IL-6 axis facilitates OSCC chemoresistance, invasion, and migration by orchestrating macrophages through a positive feedback loop. We identify the regulatory mechanism underlying the interaction and crosstalk between OSCC cells and TAMs mediated by the HSP27/IL-6 axis. Targeting the HSP27/IL-6 axis could be a promising treatment strategy for OSCC patients, potentially controlling disease progression and improving prognosis and recurrence outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。