PET Imaging Using 89Zr-Labeled StarPEG Nanocarriers Reveals Heterogeneous Enhanced Permeability and Retention in Prostate Cancer

使用 89Zr 标记的 StarPEG 纳米载体进行 PET 成像揭示前列腺癌中异质性增强的渗透性和滞留性

阅读:11
作者:Niranjan Meher, Anil P Bidkar, Anju Wadhwa, Kondapa Naidu Bobba, Suchi Dhrona, Chandrashekhar Dasari, Changhua Mu, Cyril O Y Fong, Juan A Cámara, Umama Ali, Megha Basak, David Bulkley, Veronica Steri, Shaun D Fontaine, Jun Zhu, Adam Oskowitz, Rahul R Aggarwal, Renuka Sriram, Jonathan Chou, David M W

Abstract

The enhanced permeability and retention (EPR) effect controls passive nanodrug uptake in tumors and may provide a high tumor payload with prolonged retention for cancer treatment. However, EPR-mediated tumor uptake and distribution vary by cancer phenotype. Thus, we hypothesized that a companion PET imaging surrogate may benefit EPR-mediated therapeutic drug delivery. We developed two 89Zr-radiolabeled nanocarriers based on 4-armed starPEG40kDa with or without talazoparib (TLZ), a potent PARP inhibitor, as surrogates for the PEG-TLZ4 therapeutic scaffold. For PET imaging, PEG-DFB4 and PEG-DFB1-TLZ3 were radiolabeled with 89Zr by replacing one or all four copis of TLZ on PEG-TLZ4 with deferoxamine B (DFB). The radiolabeled nanodrugs [89Zr]PEG-DFB4 and [89Zr]PEG-DFB1-TLZ3 were tested in vivo in prostate cancer subcutaneous (s.c.) xenografts (22Rv1, LTL-545, and LTL-610) and 22Rv1 metastatic models. Their EPR-mediated tumoral uptake and penetration was compared with CT26, a known EPR-high cell line. MicroPET/CT images, organ biodistribution, and calculated kinetic parameters showed high uptake in CT26 and LTL-545 and moderate to low uptake in LTL-610 and 22Rv1. MicroPET/CT and high-resolution autoradiographic images showed nanocarrier penetration into highly permeable CT26, but heterogeneous peripheral accumulation was observed in LTL-545, LTL-610, and 22Rv1 s.c. xenografts and metastatic tumors. CD31 staining of tumor sections showed homogenous vascular development in CT26 tumors and heterogeneity in other xenografts. Both [89Zr]PEG-DFB4 and [89Zr]PEG-DFB1-TLZ3 showed similar accumulation and distribution in s.c. and metastatic tumor models. Both nanocarriers can measure tumor model passive uptake heterogeneity. Although heterogeneous, prostate cancer xenografts had low EPR. These starPEG nanocarriers could be used as PET imaging surrogates to predict drug delivery and efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。