A Novel Self-Activated Mechanism for Stable Liquid Transportation Capable of Continuous-Flow and Real-time Microfluidic PCRs

一种新型自激活稳定液体运输机制,可实现连续流动和实时微流体 PCR

阅读:5
作者:Di Wu, Bing Shi, Bin Li, Wenming Wu

Abstract

The self-activated micropump capable of velocity-stable transport for both single-phased plug and double-phased droplet through long flow distance inside 3D microchannel is one dream of microfluidic scientists. While several types of passive micropumps have been developed based on different actuation mechanisms, until today, it is still one bottleneck to realize such a satisfied self-activated micropump for the stable delivery of both single and double-phased liquid inside long microchannel (e.g., several meters), due to the lack of innovative mechanism in previous methods. To solve this problem, in this article, we propose a new self-activated pumping mechanism. Herein, an end-opened gas-impermeable quartz capillary is utilized for passive transport. Mechanism of this micropump is systemically studied by both the mathematical modeling and the experimental verifications. Based on the flow assays, it totally confirmed a different pumping principle in this paper, as compared with our previous works. The R2 value of the overall flow rates inside the 3D microchannel is confirmed as high as 0.999, which is much more homogeneous than other passive pumping formats. Finally, this novel micropump is applied to continuous-flow real-time PCRs (both plug-type and microdroplet-type), with the amplification efficiency reaching 91.5% of the commercial PCR cycler instrument.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。