Temporal analysis of genome alterations induced by single-cell passaging in human embryonic stem cells

人类胚胎干细胞单细胞传代引起的基因组改变的时间分析

阅读:5
作者:Qiang Bai, Jean-Marie Ramirez, Fabienne Becker, Véronique Pantesco, Thierry Lavabre-Bertrand, Outi Hovatta, Jean-Marc Lemaître, Franck Pellestor, John De Vos

Abstract

Simplified culture conditions are essential for large-scale drug screening and medical applications of human pluripotent stem cells (hPSCs). However, hPSCs [ie, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (iPSCs) are prone to genomic instability, a phenomenon that is highly influenced by the culture conditions. Enzymatic dissociation, a cornerstone of large-scale hPSC culture systems, has been reported to be deleterious, but the extent and the timeline of the genomic alterations induced by this passaging technique are still unclear. We prospectively monitored three hESC lines that were initially derived and cultured on human feeders and passaged mechanically before switching to enzymatic single-cell passaging. We show that karyotype abnormalities and copy number variations are not restricted to long-term culture, but can occur very rapidly, within five passages after switching hESCs to enzymatic dissociation. Subchromosomal abnormalities preceded or accompanied karyotype abnormalities and were associated with increased occurrence of DNA double-strand breaks. Our results indicate that enzymatic single-cell passaging can be highly deleterious to the hPSC genome, even when used only for a limited period of time. Moreover, hPSC culture techniques should be reappraised by complementing the routine karyotype analysis with more sensitive techniques, such as microarrays, to detect subchromosomal abnormalities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。