Immunity induced by a broad class of inorganic crystalline materials is directly controlled by their chemistry

一大类无机晶体材料所诱导的免疫力直接受其化学性质控制

阅读:5
作者:Gareth R Williams, Kaat Fierens, Stephen G Preston, Daniel Lunn, Oliwia Rysnik, Sofie De Prijck, Mirjam Kool, Hannah C Buckley, Bart N Lambrecht, Dermot O'Hare, Jonathan M Austyn

Abstract

There is currently no paradigm in immunology that enables an accurate prediction of how the immune system will respond to any given agent. Here we show that the immunological responses induced by members of a broad class of inorganic crystalline materials are controlled purely by their physicochemical properties in a highly predictable manner. We show that structurally and chemically homogeneous layered double hydroxides (LDHs) can elicit diverse human dendritic cell responses in vitro. Using a systems vaccinology approach, we find that every measured response can be modeled using a subset of just three physical and chemical properties for all compounds tested. This correlation can be reduced to a simple linear equation that enables the immunological responses stimulated by newly synthesized LDHs to be predicted in advance from these three parameters alone. We also show that mouse antigen-specific antibody responses in vivo and human macrophage responses in vitro are controlled by the same properties, suggesting they may control diverse responses at both individual component and global levels of immunity. This study demonstrates that immunity can be determined purely by chemistry and opens the possibility of rational manipulation of immunity for therapeutic purposes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。