Single-Cell RNA Sequencing Reveals Endothelial Cell Transcriptome Heterogeneity Under Homeostatic Laminar Flow

单细胞 RNA 测序揭示稳态层流下内皮细胞转录组的异质性

阅读:7
作者:Ziqing Liu, Dana L Ruter, Kaitlyn Quigley, Natalie T Tanke, Yuchao Jiang, Victoria L Bautch

Approach and results

Single-cell RNA sequencing and fluorescence microscopy were used to characterize heterogeneity in RNA and protein gene expression levels of human ECs under homeostatic laminar flow compared to nonflow conditions. Analysis of transcriptome variance, Gini coefficient, and coefficient of variation showed that more genes increased RNA heterogeneity under laminar flow relative to genes whose expression became more homogeneous, although small subsets of cells did not follow this pattern. Analysis of a subset of genes for relative protein expression revealed little congruence between RNA and protein heterogeneity changes under flow. In contrast, the magnitude of expression level changes in RNA and protein was more coordinated among ECs in flow versus nonflow conditions. Conclusions: ECs exposed to homeostatic laminar flow showed overall increased heterogeneity in RNA expression levels, while expression heterogeneity of selected cognate proteins did not follow RNA heterogeneity changes closely. These findings suggest that EC homeostasis is imposed post-transcriptionally in response to laminar flow.

Conclusions

ECs exposed to homeostatic laminar flow showed overall increased heterogeneity in RNA expression levels, while expression heterogeneity of selected cognate proteins did not follow RNA heterogeneity changes closely. These findings suggest that EC homeostasis is imposed post-transcriptionally in response to laminar flow.

Objective

Endothelial cells (ECs) that form the innermost layer of all vessels exhibit heterogeneous cell behaviors and responses to pro-angiogenic signals that are critical for vascular sprouting and angiogenesis. Once vessels form, remodeling and blood flow lead to EC quiescence, and homogeneity in cell behaviors and signaling responses. These changes are important for the function of mature vessels, but whether and at what level ECs regulate overall expression heterogeneity during this transition is poorly understood. Here, we profiled EC transcriptomic heterogeneity, and expression heterogeneity of selected proteins, under homeostatic laminar flow. Approach and

Results

Single-cell RNA sequencing and fluorescence microscopy were used to characterize heterogeneity in RNA and protein gene expression levels of human ECs under homeostatic laminar flow compared to nonflow conditions. Analysis of transcriptome variance, Gini coefficient, and coefficient of variation showed that more genes increased RNA heterogeneity under laminar flow relative to genes whose expression became more homogeneous, although small subsets of cells did not follow this pattern. Analysis of a subset of genes for relative protein expression revealed little congruence between RNA and protein heterogeneity changes under flow. In contrast, the magnitude of expression level changes in RNA and protein was more coordinated among ECs in flow versus nonflow conditions. Conclusions: ECs exposed to homeostatic laminar flow showed overall increased heterogeneity in RNA expression levels, while expression heterogeneity of selected cognate proteins did not follow RNA heterogeneity changes closely. These findings suggest that EC homeostasis is imposed post-transcriptionally in response to laminar flow.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。