Membrane depolarization activates BK channels through ROCK-mediated β1 subunit surface trafficking to limit vasoconstriction

膜去极化通过 ROCK 介导的 β1 亚基表面运输激活 BK 通道,从而限制血管收缩

阅读:7
作者:M Dennis Leo, Xue Zhai, Padmapriya Muralidharan, Korah P Kuruvilla, Simon Bulley, Frederick A Boop, Jonathan H Jaggar

Abstract

Membrane depolarization of smooth muscle cells (myocytes) in the small arteries that regulate regional organ blood flow leads to vasoconstriction. Membrane depolarization also activates large-conductance calcium (Ca2+)-activated potassium (BK) channels, which limits Ca2+ channel activity that promotes vasoconstriction, thus leading to vasodilation. We showed that in human and rat arterial myocytes, membrane depolarization rapidly increased the cell surface abundance of auxiliary BK β1 subunits but not that of the pore-forming BKα channels. Membrane depolarization stimulated voltage-dependent Ca2+ channels, leading to Ca2+ influx and the activation of Rho kinase (ROCK) 1 and 2. ROCK1/2-mediated activation of Rab11A promoted the delivery of β1 subunits to the plasma membrane by Rab11A-positive recycling endosomes. These additional β1 subunits associated with BKα channels already at the plasma membrane, leading to an increase in apparent Ca2+ sensitivity and activation of the channels in pressurized arterial myocytes and vasodilation. Thus, membrane depolarization activates BK channels through stimulation of ROCK- and Rab11A-dependent trafficking of β1 subunits to the surface of arterial myocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。