Rbpj-κ mediated Notch signaling plays a critical role in development of hypothalamic Kisspeptin neurons

Rbpj-κ 介导的 Notch 信号在下丘脑 Kisspeptin 神经元的发育中起着关键作用

阅读:5
作者:Matthew J Biehl, Lori T Raetzman

Abstract

The mammalian arcuate nucleus (ARC) houses neurons critical for energy homeostasis and sexual maturation. Proopiomelanocortin (POMC) and Neuropeptide Y (NPY) neurons function to balance energy intake and Kisspeptin neurons are critical for the onset of puberty and reproductive function. While the physiological roles of these neurons have been well established, their development remains unclear. We have previously shown that Notch signaling plays an important role in cell fate within the ARC of mice. Active Notch signaling prevented neural progenitors from differentiating into feeding circuit neurons, whereas conditional loss of Notch signaling lead to a premature differentiation of these neurons. Presently, we hypothesized that Kisspeptin neurons would similarly be affected by Notch manipulation. To address this, we utilized mice with a conditional deletion of the Notch signaling co-factor Rbpj-κ (Rbpj cKO), or mice persistently expressing the Notch1 intracellular domain (NICD tg) within Nkx2.1 expressing cells of the developing hypothalamus. Interestingly, we found that in both models, a lack of Kisspeptin neurons are observed. This suggests that Notch signaling must be properly titrated for formation of Kisspeptin neurons. These results led us to hypothesize that Kisspeptin neurons of the ARC may arise from a different lineage of intermediate progenitors than NPY neurons and that Notch was responsible for the fate choice between these neurons. To determine if Kisspeptin neurons of the ARC differentiate similarly through a Pomc intermediate, we utilized a genetic model expressing the tdTomato fluorescent protein in all cells that have ever expressed Pomc. We observed some Kisspeptin expressing neurons labeled with the Pomc reporter similar to NPY neurons, suggesting that these distinct neurons can arise from a common progenitor. Finally, we hypothesized that temporal differences leading to premature depletion of progenitors in cKO mice lead to our observed phenotype. Using a BrdU birthdating paradigm, we determined the percentage of NPY and Kisspeptin neurons born on embryonic days 11.5, 12.5, and 13.5. We found no difference in the timing of differentiation of either neuronal subtype, with a majority occurring at e11.5. Taken together, our findings suggest that active Notch signaling is an important molecular switch involved in instructing subpopulations of progenitor cells to differentiate into Kisspeptin neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。