Manipulating hemoglobin oxygenation using silica nanoparticles: a novel prospect for artificial oxygen carriers

利用二氧化硅纳米粒子控制血红蛋白氧合:人工氧载体的新前景

阅读:6
作者:Stéphanie Devineau, Laurent Kiger, Frédéric Galacteros, Véronique Baudin-Creuza, Michael Marden, Jean Philippe Renault, Serge Pin

Abstract

Recently, nanoparticles have attracted much attention as new scaffolds for hemoglobin-based oxygen carriers (HBOCs). Indeed, the development of bionanotechnology paves the way for the rational design of blood substitutes, providing that the interaction between the nanoparticles and hemoglobin at a molecular scale and its effect on the oxygenation properties of hemoglobin are finely controlled. Here, we show that human hemoglobin has a high affinity for silica nanoparticles, leading to the adsorption of hemoglobin tetramers on the surface. The adsorption process results in a remarkable retaining of the oxygenation properties of human adult hemoglobin and sickle cell hemoglobin, associated with an increase of the oxygen affinity. The cooperative oxygen binding exhibited by adsorbed hemoglobin and the comparison with the oxygenation properties of diaspirin cross-linked hemoglobin confirmed the preservation of the tetrameric structure of hemoglobin loaded on silica nanoparticles. Our results show that silica nanoparticles can act as an effector for human native and mutant hemoglobin. Manipulating hemoglobin oxygenation using nanoparticles opens the way to the design of novel HBOCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。