CL-K1 Promotes Complement Activation and Regulates Opsonophagocytosis of Macrophages with CD93 Interaction in a Primitive Vertebrate

CL-K1 促进补体活化并通过与原始脊椎动物 CD93 相互作用调节巨噬细胞的调理吞噬作用

阅读:8
作者:Liangliang Mu, Xiaoxue Yin, Li Qiu, Jiadong Li, Jinfen Mo, Hao Bai, Qingliang Zeng, Jianmin Ye

Abstract

Collectin is a crucial component of the innate immune system and plays a vital role in the initial line of defense against pathogen infection. In mammals, collectin kidney 1 (CL-K1) is a soluble collectin that has recently been identified to have significant functions in host defense. However, the evolutionary origins of immune defense of CL-K1 and its mechanism in clearance of pathogenic microorganisms remain unclear, especially in early vertebrates. In this study, the Oreochromis niloticus CL-K1 (OnCL-K1) protein was purified and identified, which was capable of binding to two important pathogens of tilapia, Streptococcus agalactiae and Aeromonas hydrophila. Interestingly, OnCL-K1 exhibited direct bactericidal activity by binding to lipoteichoic acid or LPS on cell walls, disrupting the permeability and integrity of the bacterial membrane in vitro. Upon bacterial challenge, OnCL-K1 significantly inhibited the proliferation of pathogenic bacteria, reduced the inflammatory response, and improved the survival of tilapia. Further research revealed that OnCL-K1 could associate with OnMASPs to initiate and regulate the lectin complement pathway. Additionally, OnCD93 reduced the complement-mediated hemolysis by competing with OnMASPs for binding to OnCL-K1. More importantly, OnCL-K1 could facilitate phagocytosis by collaborating with cell surface CD93 in a lectin pathway-independent manner. Moreover, OnCL-K1 also promoted the formation of phagolysosomes, which degraded and killed ingested bacteria. Therefore, this study reveals the antibacterial response mechanism of CL-K1 in primitive vertebrates, including promoting complement activation, enhancing opsonophagocytosis, and killing of macrophages, as well as its internal links, all of which provide (to our knowledge) new insights into the understanding of the evolutionary origins and regulatory roles of the collectins in innate immunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。