LncRNA KCNQ1OT1 promotes cell proliferation, migration and invasion via regulating miR-129-5p/JAG1 axis in non-small cell lung cancer

LncRNA KCNQ1OT1通过调控miR-129-5p/JAG1轴促进非小细胞肺癌细胞增殖、迁移和侵袭

阅读:7
作者:Yan Wang, Lei Zhang, Jiasheng Yang, Ruilin Sun

Background

Non-small cell lung cancer (NSCLC) is the most deadly cancer worldwide. LncRNA KCNQ1OT1 has been reported to be involved in the progression of various tumors, including NSCLC. However, the precise mechanism of KCNQ1OT1 in NSCLC requires further investigation.

Conclusion

KCNQ1OT1 induced proliferation, migration and invasion of NSCLC cells by sponging miR-129-5p and regulating JAG1 expression, indicating that KCNQ1OT1 was a therapeutic target for NSCLC.

Methods

The expression levels of KCNQ1OT1, miR-129-5p and JAG1 were detected by qRT-PCR or western blot. Kaplan-Meier survival analysis was used to assess the correlation between KCNQ1OT1 expression and the overall survival of NSCLC patients. CCK-8 assay was used to measure cell viability. Cell migration and invasion were detected by transwell assay. The targets of KCNQ1OT1 and miR-129-5p were predicted by bioinformatics, which was confirmed by dual-luciferase reporter assay or pull-down assay.

Results

KCNQ1OT1 expression was significantly enhanced, while miR-129-5p expression was dramatically reduced in NSCLC tissues and cells. Higher KCNQ1OT1 shortened overall survival and was positively associated with tumor stage and lymph node metastasis. KCNQ1OT1 knockdown inhibited proliferation, migration and invasion of NSCLC cells. Inhibition of miR-129-5p attenuated the inhibition of NSCLC cell viability, migration and invasion induced by KCNQ1OT1 knockdown. In addition, JAG1 was confirmed as a target of miR-129-5p. Knockdown of JAG1 reversed the effects of miR-129-5p knockdown on NSCLC progression. KCNQ1OT1 regulated JAG1 expression by sponging miR-129-5p in NSCLC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。