Quantum rotor induced hyperpolarization

量子转子诱导超极化

阅读:7
作者:Christian Ludwig, Martin Saunders, Ildefonso Marin-Montesinos, Ulrich L Günther

Abstract

Despite its broad applicability NMR has always been limited by its inherently low sensitivity. Hyperpolarization methods have the potential to overcome this limitation and, in the case of ex situ dynamic nuclear polarization (DNP), large enhancement factors have been achieved. Although many other polarization methods have been described in the past, including chemically and parahydrogen-induced polarization and optical pumping, DNP has recently been the most popular. Here we present an additional polarization mechanism arising from quantum rotor effects in methyl groups, which generates polarizations at temperatures < 1.5 K and interferes with DNP at such temperatures. The polarization generated by this mechanism is efficiently transferred via carbon bound protons. Although quantum rotor polarizations have been studied for a small range of molecules in great detail, we observe such effects for a much broader range of substances with very different polarization rates at temperatures < 1.5 K. Moreover, we report transfer of quantum rotor polarization across a chain of protons. The observed effect not only influences the polarization in low-temperature DNP experiments but also opens a new independent avenue to generate enhanced sensitivity for NMR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。