Divergent signaling mechanisms for venous versus arterial contraction as revealed by endothelin-1

内皮素-1 揭示的静脉收缩与动脉收缩的不同信号机制

阅读:9
作者:Nathan R Tykocki, BinXi Wu, William F Jackson, Stephanie W Watts

Conclusions

These findings suggest that ET-1 activates PLC in aorta and vena cava, but vena cava contraction to ET-1 may be largely IP3 independent. Rather, DAG—not IP3—may contribute to contraction to ET-1 in vena cava, in part by activation of PKC. These studies outline a fundamental difference between venous and arterial smooth muscle and further reinforce a heterogeneity of vascular smooth muscle function that could be taken advantage of for therapeutic development.

Methods

The model was the male Sprague-Dawley rat. Isolated tissue baths were used to measure isometric contraction. Western blot and immunocytochemical analyses measured the magnitude of expression and site of expression, respectively, of IP3 receptors in smooth muscle/tissue. Pharmacologic methods were used to modify PLC activity and signaling elements downstream of PLC (IP3 receptors, PKC).

Objective

Venous function is underappreciated in its role in blood pressure determination, a physiologic parameter normally ascribed to changes in arterial function. Significant evidence points to the hormone endothelin-1 (ET-1) as being important to venous contributions to blood pressure. We hypothesized that the artery and vein should similarly depend on the signaling pathways stimulated by ET-1, specifically phospholipase C (PLC) activation. This produces two functional arms of signaling: diacylglycerol (DAG; protein kinase C [PKC] activation) and inositol trisphosphate (IP3) production (intracellular calcium release).

Results

ET-1-induced contraction was PLC dependent in both tissues as the PLC inhibitor U-73122 significantly reduced contraction in aorta (86% ± 4% of control; P < .05) and vena cava (49% ± 11% of control; P < .05). However, ET-1-induced contraction was not significantly inhibited by the IP3 receptor inhibitor 2-aminoethoxydiphenylborane (100 μM) in vena cava (82% ± 8% of control; P = .23) but was in the aorta (55% ± 4% of control; P < .05). All three IP3 receptor isoforms were located in venous smooth muscle. IP3 receptors were functional in both tissues as the novel membrane-permeable IP3 analogue (Bt-IP3; 10 μM) contracted aorta and vena cava. Similarly, whereas the PKC inhibitor chelerythrine (10 μM) attenuated ET-1-induced contraction in vena cava and aorta (5% ± 2% and 50% ± 5% of control, respectively; P < .05), only the vena cava contracted to the DAG analogue 1-oleoyl-2-acetyl-sn-glycerol. Conclusions: These findings suggest that ET-1 activates PLC in aorta and vena cava, but vena cava contraction to ET-1 may be largely IP3 independent. Rather, DAG—not IP3—may contribute to contraction to ET-1 in vena cava, in part by activation of PKC. These studies outline a fundamental difference between venous and arterial smooth muscle and further reinforce a heterogeneity of vascular smooth muscle function that could be taken advantage of for therapeutic development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。