Cytotoxic effects of G(M1) ganglioside and amyloid β-peptide on mouse embryonic neural stem cells

G(M1)神经节苷脂和淀粉样β肽对小鼠胚胎神经干细胞的细胞毒作用

阅读:10
作者:Makoto Yanagisawa, Toshio Ariga, Robert K Yu

Abstract

AD (Alzheimer's disease) is a neurodegenerative disease and the most common form of dementia. One of the pathological hallmarks of AD is the aggregation of extracellular Aβs (amyloid β-peptides) in senile plaques in the brain. The process could be initiated by seeding provided by an interaction between G(M1) ganglioside and Aβs. Several reports have documented the bifunctional roles of Aβs in NSCs (neural stem cells), but the precise effects of G(M1) and Aβ on NSCs have not yet been clarified. We evaluated the effect of G(M1) and Aβ-(1-40) on mouse NECs (neuroepithelial cells), which are known to be rich in NSCs. No change of cell number was detected in NECs cultured in the presence of either G(M1) or Aβ-(1-40). On the contrary, a decreased number of NECs were cultured in the presence of a combination of G(M1) and Aβ-(1-40). The exogenously added G(M1) and Aβ-(1-40) were confirmed to incorporate into NECs. The Ras-MAPK (mitogen-activated protein kinase) pathway, important for cell proliferation, was intact in NECs simultaneously treated with G(M1) and Aβ-(1-40), but caspase 3 was activated. NECs treated with G(M1) and Aβ-(1-40) were positive in the TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) assay, an indicator of cell death. It was found that G(M1) and Aβ-(1-40) interacted in the presence of cholesterol and sphingomyelin, components of cell surface microdomains. The cytotoxic effect was found also in NSCs prepared via neurospheres. These results indicate that Aβ-(1-40) and G(M1) co-operatively exert a cytotoxic effect on NSCs, likely via incorporation into NEC membranes, where they form a complex for the activation of cell death signalling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。