Unlocking the protective potential of the angiotensin type 2 receptor (AT2R) in acute lung injury and age-related pulmonary dysfunction

揭示血管紧张素 2 型受体 (AT2R) 在急性肺损伤和年龄相关肺功能障碍中的保护潜力

阅读:11
作者:Peter Abadir, Caglar Cosarderelioglu, Mahendra Damarla, Alla Malinina, Dustin Dikeman, Ruth Marx, Monica M Nader, Michael Abadir, Jeremy Walston, Enid Neptune

Abstract

Despite its known importance in the cardiovascular system, the specific role and impact of the angiotensin type 2 receptor (AT2R) in lung physiology and pathophysiology remain largely elusive. In this study, we highlight the distinct and specialized lung-specific roles of AT2R, primarily localized to an alveolar fibroblast subpopulation, in contrast to the angiotensin type 1 receptor (AT1R), which is almost exclusively expressed in lung pericytes. Evidence from our research demonstrates that the disruption of AT2R (AT2R-/y), is associated with a surge in oxidative stress and impaired lung permeability, which were further intensified by Hyperoxic Acute Lung Injury (HALI). With aging, AT2R-/y mice show an increase in oxidative stress, premature enlargement of airspaces, as well as increased mortality when exposed to hyperoxia as compared to age-matched WT mice. Our investigation into Losartan, an AT1R blocker, suggests that its primary HALI lung-protective effects are channeled through AT2R, as its protective benefits are absent in AT2R-/y mice. Importantly, a non-peptide AT2R agonist, Compound 21 (C21), successfully reverses lung oxidative stress and TGFβ activation in wild-type (WT) mice exposed to HALI. These findings suggest a possible paradigm shift in the therapeutic approach for lung injury and age-associated pulmonary dysfunction, from targeting AT1R with angiotensin receptor blockers (ARBs) towards boosting the protective function of AT2R.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。