Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A

Elesclomol 通过降解 ATP7A 诱导结直肠癌细胞中铜依赖性铁死亡

阅读:7
作者:Wei Gao, Zhao Huang, Jiufei Duan, Edouard C Nice, Jie Lin, Canhua Huang

Abstract

Cancer cells reprogram their copper metabolism to adapt to adverse microenvironments, such as oxidative stress. The copper chelator elesclomol has been reported to have considerable anticancer efficacy, but the underlying mechanisms remain largely unknown. In this study, we found that elesclomol-mediated copper overload inhibits colorectal cancer (CRC) both in vitro and in vivo. Elesclomol alone promotes the degradation of the copper transporter copper-transporting ATPase 1 (ATP7A), which retards the proliferation of CRC cells. This property distinguishes it from several other copper chelators. Combinational treatment of elesclomol and copper leads to copper retention within mitochondria due to ATP7A loss, leading to reactive oxygen species accumulation, which in turn promotes the degradation of SLC7A11, thus further enhancing oxidative stress and consequent ferroptosis in CRC cells. This effect accounts for the robust antitumour activity of elesclomol against CRC, which can be reversed by the administration of antioxidants and ferroptosis inhibitors, as well as the overexpression of ATP7A. In summary, our findings indicate that elesclomol-induced copper chelation inhibits CRC by targeting ATP7A and regulating ferroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。