TLR2-dependent activation of β-catenin pathway in dendritic cells induces regulatory responses and attenuates autoimmune inflammation

TLR2 依赖的树突状细胞 β-catenin 通路激活可诱导调节反应并减轻自身免疫炎症

阅读:5
作者:Indumathi Manoharan, Yuan Hong, Amol Suryawanshi, Melinda L Angus-Hill, Zuoming Sun, Andrew L Mellor, David H Munn, Santhakumar Manicassamy

Abstract

Dendritic cells (DCs) sense microbes via multiple innate receptors. Signals from different innate receptors are coordinated and integrated by DCs to generate specific innate and adaptive immune responses against pathogens. Previously, we have shown that two pathogen recognition receptors, TLR2 and dectin-1, which recognize the same microbial stimulus (zymosan) on DCs, induce mutually antagonistic regulatory or inflammatory responses, respectively. How diametric signals from these two receptors are coordinated in DCs to regulate or incite immunity is not known. In this study, we show that TLR2 signaling via AKT activates the β-catenin/T cell factor 4 pathway in DCs and programs them to drive T regulatory cell differentiation. Activation of β-catenin/T cell factor 4 was critical to induce regulatory molecules IL-10 (Il-10) and vitamin A metabolizing enzyme retinaldehyde dehydrogenase 2 (Aldh1a2) and to suppress proinflammatory cytokines. Deletion of β-catenin in DCs programmed them to drive Th17/Th1 cell differentiation in response to zymosan. Consistent with these findings, activation of the β-catenin pathway in DCs suppressed chronic inflammation and protected mice from Th17/Th1-mediated autoimmune neuroinflammation. Thus, activation of β-catenin in DCs via the TLR2 receptor is a novel mechanism in DCs that regulates autoimmune inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。