Toward the assembly of a minimal divisome

朝着最小分裂体的组装方向

阅读:7
作者:Zohreh Nourian, Andrew Scott, Christophe Danelon

Abstract

The construction of an irreducible minimal cell having all essential attributes of a living system is one of the biggest challenges facing synthetic biology. One ubiquitous task accomplished by any living systems is the division of the cell envelope. Hence, the assembly of an elementary, albeit sufficient, molecular machinery that supports compartment division, is a crucial step towards the realization of self-reproducing artificial cells. Looking backward to the molecular nature of possible ancestral, supposedly more rudimentary, cell division systems may help to identify a minimal divisome. In light of a possible evolutionary pathway of division mechanisms from simple lipid vesicles toward modern life, we define two approaches for recapitulating division in primitive cells: the membrane deforming protein route and the lipid biosynthesis route. Having identified possible proteins and working mechanisms participating in membrane shape alteration, we then discuss how they could be integrated into the construction framework of a programmable minimal cell relying on gene expression inside liposomes. The protein synthesis using recombinant elements (PURE) system, a reconstituted minimal gene expression system, is conceivably the most versatile synthesis platform. As a first step towards the de novo synthesis of a divisome, we showed that the N-BAR domain protein produced from its gene could assemble onto the outer surface of liposomes and sculpt the membrane into tubular structures. We finally discuss the remaining challenges for building up a self-reproducing minimal cell, in particular the coupling of the division machinery with volume expansion and genome replication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。