Proteomic analysis of post mortem brain tissue from autism patients: evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins

自闭症患者死后脑组织的蛋白质组学分析:前额叶皮质和小脑突触连接相关蛋白发生相反变化的证据

阅读:10
作者:Jantine Ac Broek, Paul C Guest, Hassan Rahmoune, Sabine Bahn

Background

Autism is a neurodevelopmental disorder characterized by impaired language, communication and social skills. Although genetic studies have been carried out in this field, none of the genes identified have led to an explanation of the underlying causes. Here, we have investigated molecular alterations by proteomic profiling of post mortem brain samples from autism patients and controls. The analysis focussed on prefrontal cortex and cerebellum as previous studies have found that these two brain regions are structurally and functionally connected, and they have been implicated in autism.

Conclusion

These findings suggest altered structural and/or functional connectivity in the prefrontal cortex and cerebellum in autism patients, as shown by opposite effects on proteins involved in myelination and synaptic function. Further investigation of these findings could help to increase our understanding of the mechanisms underlying autism relating to brain connectivity, with the ultimate aim of facilitating novel therapeutic approaches.

Methods

Post mortem prefrontal cortex and cerebellum samples from autism patients and matched controls were analysed using selected reaction monitoring mass spectrometry (SRM-MS). The main objective was to identify significantly altered proteins and biological pathways and to compare these across these two brain regions.

Results

Targeted SRM-MS resulted in identification of altered levels of proteins related to myelination, synaptic vesicle regulation and energy metabolism. This showed decreased levels of the immature astrocyte marker vimentin in both brain regions, suggesting a decrease in astrocyte precursor cells. Also, decreased levels of proteins associated with myelination and increased synaptic and energy-related proteins were found in the prefrontal cortex, indicative of increased synaptic connectivity. Finally, opposite directional changes were found for myelination and synaptic proteins in the cerebellum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。