SARS-CoV-2 omicron sub-lineages differentially modulate interferon response in human lung epithelial cells

SARS-CoV-2 omicron 亚谱系对人肺上皮细胞中的干扰素反应有差异调节

阅读:6
作者:Gianni Gori Savellini, Gabriele Anichini, Maria Grazia Cusi

Abstract

Although most of the attention was focused on the characterization of changes in the Spike protein among variants of SARS-CoV-2 virus, mutations outside the Spike region are likely to contribute to virus pathogenesis, virus adaptation and escape to the immune system. Phylogenetic analysis of SARS-CoV-2 Omicron strains reveals that several virus sub-lineages could be distinguished, from BA.1 up to BA.5. Regarding BA.1, BA.2 and BA.5, several mutations concern viral proteins with antagonistic activity to the innate immune system, such as NSP1 (S135R), which is involved in mRNAs translation, exhibiting a general shutdown in cellular protein synthesis. Additionally, mutations and/or deletions in the ORF6 protein (D61L) and in the nucleoprotein N (P13L, D31-33ERS, P151S, R203K, G204R and S413R) have been reported, although the impact of such mutations on protein function has not been further studied. The aim of this study was to better investigate the innate immunity modulation by different Omicron sub-lineages, in the attempt to identify viral proteins that may affect virus fitness and pathogenicity. Our data demonstrated that, in agreement with a reduced Omicron replication in Calu-3 human lung epithelial cells compared to the Wuhan-1 strain, a lower secretion of interferon beta (IFN-β) from cells was observed in all sub-lineages, except for BA.2. This evidence might be correlated with the presence of a mutation within the ORF6 protein (D61L), which is strikingly associated to the antagonistic function of the viral protein, since additional mutations in viral proteins acting as interferon antagonist were not detected or did not show significant influence. Indeed, the recombinant mutated ORF6 protein failed to inhibit IFN-β production in vitro. Furthermore, we found an induction of IFN-β transcription in BA.1 infected cells, that was not correlated with the cytokine release at 72 h post-infection, suggesting that post-transcriptional events can be involved in controlling the innate immunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。