Impaired olfactory bulb neurogenesis mediated by Notch1 contributes to olfactory dysfunction in mice chronically exposed to methamphetamine

Notch1 介导的嗅球神经发生受损导致长期暴露于甲基苯丙胺的小鼠出现嗅觉功能障碍

阅读:5
作者:Cihang Gu #, Zhuo Wang #, Wenyu Luo, Haosen Ling, Xilie Cui, Tongtong Deng, Kuan Li, Wei Huang, Qiqian Xie, Bowen Tao, Xiaolan Qi, Xiaojia Peng, Jiuyang Ding, Pingming Qiu

Abstract

Methamphetamine (Meth) is a potent central nervous system stimulant with high addictive potential and neurotoxic effects. Chronic use results in significant damage in various brain functions, including cognition, memory, and sensory perception. Olfactory dysfunction is a notable yet often overlooked consequence of Meth abuse, and its underlying mechanisms are not fully understood. This study investigates the mechanisms of Meth-induced olfactory impairment through a thorough examination of olfactory bulb (OB) neurogenesis. We found that chronic Meth abuse impaired olfactory function in mice by not only reducing the self-renewal of subventricular zone (SVZ) neural stem cells (NSCs) but also altering their differentiation potential, leading their differentiation into astrocytes at the expense of neurons. Mechanistically, Meth inhibits autophagosome-lysosome fusion by downregulating Syntaxin 17 (Stx17), which reduces autophagic flux. In NSCs, autophagy tightly regulates Notch1 levels, and impaired autophagic degradation of Notch1 leads to its abnormal activation. This alters NSCs fate determination, ultimately affecting OB neurogenesis. Our study reveals that Meth impairs olfactory function through autophagic dysfunction and aberrant Notch1 signaling. Understanding these mechanisms not only provides new insights into Meth-induced olfactory dysfunction but also offers potential targets for developing therapies to alleviate Meth-induced neurotoxicity and sensory damage in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。