Cyclic β2,3-amino acids improve the serum stability of macrocyclic peptide inhibitors targeting the SARS-CoV-2 main protease

环状 β2,3-氨基酸可提高针对 SARS-CoV-2 主蛋白酶的大环肽抑制剂的血清稳定性

阅读:5
作者:Takashi Miura, Tika R Malla, Lennart Brewitz, Anthony Tumber, Eidarus Salah, Kang Ju Lee, Naohiro Terasaka, C David Owen, Claire Strain-Damerell, Petra Lukacik, Martin A Walsh, Akane Kawamura, Christopher J Schofield, Takayuki Katoh, Hiroaki Suga

Abstract

Due to their constrained conformations, cyclic β2,3-amino acids (cβAA) are key building blocks that can fold peptides into compact and rigid structures, improving peptidase resistance and binding affinity to target proteins, due to their constrained conformations. Although the translation efficiency of cβAAs is generally low, our engineered tRNA, referred to as tRNAPro1E2, enabled efficient incorporation of cβAAs into peptide libraries using the flexible in vitro translation (FIT) system. Here we report on the design and application of a macrocyclic peptide library incorporating 3 kinds of cβAAs: (1R,2S)-2-aminocyclopentane carboxylic acid (β1), (1S,2S)-2-aminocyclohexane carboxylic acid (β2), and (1R,2R)-2-aminocyclopentane carboxylic acid. This library was applied to an in vitro selection against the SARS-CoV-2 main protease (Mpro). The resultant peptides, BM3 and BM7, bearing one β2 and two β1, exhibited potent inhibitory activities with IC50 values of 40 and 20 nM, respectively. BM3 and BM7 also showed remarkable serum stability with half-lives of 48 and >168 h, respectively. Notably, BM3A and BM7A, wherein the cβAAs were substituted with alanine, lost their inhibitory activities against Mpro and displayed substantially shorter serum half-lives. This observation underscores the significant contribution of cβAA to the activity and stability of peptides. Overall, our results highlight the potential of cβAA in generating potent and highly stable macrocyclic peptides with drug-like properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。