Effect of human 15-lipoxygenase-1 metabolites on vascular function in mouse mesenteric arteries and hearts

人类15-脂氧合酶-1代谢物对小鼠肠系膜动脉和心脏血管功能的影响

阅读:6
作者:Tamas Kriska, Cody Cepura, Lawan Siangjong, Tina C Wan, John A Auchampach, Aviv Shaish, Dror Haratz, Ganesh Kumar, John R Falck, Kathryn M Gauthier, William B Campbell

Abstract

Lipoxygenases regulate vascular function by metabolizing arachidonic acid (AA) to dilator eicosanoids. Previously, we showed that endothelium-targeted adenoviral vector-mediated gene transfer of the human 15-lipoxygenase-1 (h15-LO-1) enhances arterial relaxation through the production of vasodilatory hydroxyepoxyeicosatrienoic acid (HEETA) and trihydroxyeicosatrienoic acid (THETA) metabolites. To further define this function, a transgenic (Tg) mouse line that overexpresses h15-LO-1 was studied. Western blot, immunohistochemistry and RT-PCR results confirmed expression of 15-LO-1 transgene in tissues, especially high quantity in coronary arterial wall, of Tg mice. Reverse-phase HPLC analysis of [(14)C]-AA metabolites in heart tissues revealed enhanced 15-HETE synthesis in Tg vs. WT mice. Among the 15-LO-1 metabolites, 15-HETE, erythro-13-H-14,15-EETA, and 11(R),12(S),15(S)-THETA relaxed the mouse mesenteric arteries to the greatest extent. The presence of h15-LO-1 increased acetylcholine- and AA-mediated relaxation in mesenteric arteries of Tg mice compared to WT mice. 15-LO-1 was most abundant in the heart; therefore, we used the Langendorff heart model to test the hypothesis that elevated 15-LO-1 levels would increase coronary flow following a short ischemia episode. Both peak flow and excess flow of reperfused hearts were significantly elevated in hearts from Tg compared to WT mice being 2.03 and 3.22 times greater, respectively. These results indicate that h15-LO-1-derived metabolites are highly vasoactive and may play a critical role in regulating coronary blood flow.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。