Scavenger receptors of endothelial cells mediate the uptake and cellular proatherogenic effects of carbamylated LDL

内皮细胞清道夫受体介导氨基甲酰化低密度脂蛋白的吸收和细胞促动脉粥样硬化作用

阅读:6
作者:Eugene O Apostolov, Sudhir V Shah, Debarti Ray, Alexei G Basnakian

Conclusions

Our data suggest that cLDL uses a unique pattern of scavenger receptors. They show that LOX-1 receptor, and partially CD36, SREC-1, and SR-A1 receptors, are essential for the proatherogenic effects of cLDL on human endothelial cells.

Objective

Carbamylated LDL (cLDL) has been recently shown to have robust proatherogenic effects on human endothelial cells in vitro, suggesting cLDL may have a significant role in atherosclerosis in uremia. The current study was designed to determine which receptors are used by cLDL and thus cause the proatherogenic effects.

Results

In ex vivo or in vitro models as well as in intact animals, administration of cLDL was associated with endothelial internalization of cLDL and subendothelial translocation (transcytosis). In vitro recombinant LOX-1 and SREC-1 receptors showed the greatest cLDL binding. However, pretreatment of the endothelial cells with specific inhibiting antibodies demonstrated that cLDL binds mainly to LOX-1 and CD36 receptors. The transcytosis was dependent on SR-A1, SREC-1, and CD36 receptors whereas LOX-1 receptor was not involved. The cytotoxicity was mediated by several studied scavenger receptors, but cLDL-induced monocyte adhesion depended only on LOX-1. The cLDL-induced synthesis of LOX-1 protein significantly contributed to both cytotoxicity and accelerated monocyte adhesion to endothelial cells. Conclusions: Our data suggest that cLDL uses a unique pattern of scavenger receptors. They show that LOX-1 receptor, and partially CD36, SREC-1, and SR-A1 receptors, are essential for the proatherogenic effects of cLDL on human endothelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。