The role of ethanol metabolism in development of alcoholic steatohepatitis in the rat

乙醇代谢在大鼠酒精性脂肪性肝炎发展中的作用

阅读:10
作者:Martin J Ronis, Soheila Korourian, Michael L Blackburn, Jamie Badeaux, Thomas M Badger

Abstract

The importance of ethanol metabolism in the development of alcoholic liver disease remains controversial. The present study examined the effects of selective inhibition of the cytochrome P450 enzyme CYP2E1 compared with the inhibition of overall ethanol metabolism on the development of alcoholic steatohepatitis. Adult male Sprague-Dawley rats were fed via total enteral nutrition for 45 days with or without 10-12g/kg/d ethanol. Some groups were given 200mg/kg/d of the CYP2E1 inhibitor diallyl sulfide (DAS). Other groups were treated with 164mg/kg/d of the alcohol dehydrogenase (ADH) inhibitor 4-methylpyrazole (4-MP) and dosed at 2-3g/kg/d ethanol to maintain similar average urine ethanol concentrations. Liver pathology scores and levels of apoptosis were elevated by ethanol (P<.05) but did not differ significantly on cotreatment with DAS or 4-MP. However, liver triglycerides were lower when ethanol-fed rats were treated with DAS or 4-MP (P<.05). Serum alanine aminotransferase values were significantly lower in ethanol-fed 4-MP-treated rats indicating reduced necrosis. Hepatic oxidative stress and the endoplasmic reticulum (ER) stress marker tribbles-related protein 3 were increased after ethanol (P<.05); further increased by DAS but partly attenuated by 4-MP. Both DAS and 4-MP reversed ethanol increases in the cytokine, tumor necrosis factor-alpha (TNF-alpha), and the chemokine CXCL-2 (P<.05). However, neither inhibitors prevented ethanol suppression of interleukins IL-4 or IL-12. Moreover, neither inhibitors prevented ethanol increases in tumor growth factor-beta mRNA. Ethanol and DAS additively induced hepatic hyperplasia (P<.05). These data suggest that a significant proportion of hepatic injury after ethanol exposure is independent of alcohol metabolism. Ethanol metabolism by CYP2E1 may be linked in part to triglyceride accumulation, to induction of TNF-alpha, and to chemokine production. Ethanol metabolism by ADH may be linked in part to oxidative and ER stress and necrotic injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。