Neutrophil extracellular traps promoting fibroblast activation and aggravating limb ischemia through Wnt5a pathway

中性粒细胞胞外陷阱通过Wnt5a通路促进成纤维细胞活化加重肢体缺血

阅读:4
作者:Shigang Lin, Ruoran Lin, Pengwei Zhu, Xiaotong Sun, Chenyang Qiu, Bohuan Zhang, Yangyan He, Qingbo Xu, Hongkun Zhang

Abstract

Although the formation of NETs contributes to cancer cell invasion and distant metastasis, its role in the pathological progression of limb ischemia remains unknown. This study investigated the functional significance of NETs in cell-cell crosstalk during limb ischemia. The changes of cell subsets in lower limb ischemia samples were detected by single-cell RNA sequencing. The expression of neutrophil extracellular traps (NETs) related markers in lower limb ischemia samples was detected by immunohistochemistry and Western blotting. The signaling pathway of NETs activation in fibroblasts was verified by immunofluorescence, PCR and Western blotting. Through single-cell RNA sequencing (scRNA-seq), we identified 9 distinct cell clusters, with significantly upregulated activation levels in fibroblasts and neutrophils and phenotypic transformation of smooth muscle cells (SMCs) into a proliferative state in ischemic tissue. At the same time, the interaction between fibroblasts and smooth muscle cells was significantly enhanced in ischemic tissue. NETs levels rise and fibroblast activation is induced in ischemic conditions. Mechanistically, activated fibroblasts promote smooth muscle cell proliferation through the Wnt5a pathway. In ischemic mice, inhibition of Wnt5a mitigated vascular remodeling and subsequent ischemia. These findings highlighting the role of cell-cell crosstalk in ischemia and vascular remodeling. We found that the NETs-initiated fibroblast-SMC interaction is a critical regulator of limb ischemia via Wnt5a pathway, a potential therapeutic target for the treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。