Allene Oxide Synthase Pathway in Cereal Roots: Detection of Novel Oxylipin Graminoxins

谷物根部氧化丙烯酰合酶途径:新型氧化脂质草毒素的检测

阅读:13
作者:Alexander N Grechkin, Anna V Ogorodnikova, Alevtina M Egorova, Fakhima K Mukhitova, Tatiana M Ilyina, Bulat I Khairutdinov

Abstract

Young roots of wheat, barley, and sorghum, as well as methyl jasmonate pretreated rice seedlings, undergo an unprecedented allene oxide synthase pathway targeted to previously unknown oxylipins 1-3. These Favorskii-type products, (4Z)-2-pentyl-4-tridecene-1,13-dioic acid (1), (2'Z)-2-(2'-octenyl)-decane-1,10-dioic acid (2), and (2'Z,5'Z)-2-(2',5'-octadienyl)-decane-1,10-dioic acid (3), have a carboxy function at the side chain, as revealed by their MS and NMR spectral data. Compounds 1-3 were the major oxylipins detected, along with the related α-ketols. Products 1-3 were biosynthesized from (9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoic acid, (9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoic acid (9-HPOD), and (9S,10E,12Z,15Z)-9-hydroperoxy-10,12,15-octadecatrienoic acid, respectively, via the corresponding allene oxides and cyclopropanones. The data indicate that conversion of the allene oxide into the cyclopropanone is controlled by soluble cyclase. The short-lived cyclopropanones are hydrolyzed to products 1-3. The collective name "graminoxins" has been ascribed to oxylipins 1-3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。