Protection mediated by chemokine CXCL10 in BALB/c mice infected by Leishmania infantum

趋化因子 CXCL10 介导对感染利什曼原虫的 BALB/c 小鼠的保护作用

阅读:5
作者:Webertty Mayk Eufrásio Figueiredo, Sayonara de Melo Viana, Dorotheia Teixeira Alves, Priscila Valera Guerra, Zirlane Castelo Branco Coêlho, Helene Santos Barbosa, Maria Jania Teixeira

Background

Visceral leishmaniasis (VL) caused by Leishmania infantum is characterised by the loss of the ability of the host to generate an effective immune response. Chemokines have a direct involvement in the pathogenesis of leishmaniasis, causing a rapid change in the expression of these molecules during infection by Leishmania. Objectives: Herein, it was investigated the role of CXCL10 in controlling infection by L. infantum.

Conclusions

This study suggests a partial protective role of CXCL10 against L. infantum, mediated by IFN-g, not dependent on NO, and with suppression of IL-10 and TGF-β. These data may provide information for the development of new approaches for future therapeutic interventions for VL.

Methods

RAW 264.7 macrophages were infected with L. infantum in vitro and treated or not with CXCL10 (25, 50 and 100 ng/mL). Parasite load, as well as nitric oxide (NO), IL-4 and IL-10 production were assessed at 24 and 48 h after infection. In vivo, BALB/c mice were infected and treated or not with CXCL10 (5 μg/kg) at one, three and seven days of infection. Parasite load, IFN-g, IL-4, TGF-β and IL-10 were evaluated one, seven and 23 days post treatment. Findings: In vitro, CXCL10 reduced parasitic load, not dependent on NO, and inhibited IL-10 and IL-4 secretion. In vivo, CXCL10 was able to reduce the parasite load in both liver and spleen, four weeks after infection, representing a higher decrease in the number of parasites in these organs, also induced IFN-γ at day 23 after treatment, correlating with the decrease in parasite load, and reduced IL-10 and TGF-β. Main conclusions: This study suggests a partial protective role of CXCL10 against L. infantum, mediated by IFN-g, not dependent on NO, and with suppression of IL-10 and TGF-β. These data may provide information for the development of new approaches for future therapeutic interventions for VL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。