A c-Myc and surface CD19 signaling amplification loop promotes B cell lymphoma development and progression in mice

c-Myc 和表面 CD19 信号放大环路促进小鼠 B 细胞淋巴瘤的发展和进展

阅读:6
作者:Jonathan C Poe, Veronique Minard-Colin, Evgueni I Kountikov, Karen M Haas, Thomas F Tedder

Abstract

Malignant B cells responding to external stimuli are likely to gain a growth advantage in vivo. These cells may therefore maintain surface CD19 expression to amplify transmembrane signals and promote their expansion and survival. To determine whether CD19 expression influences this process, Eμ-Myc transgenic (c-Myc(Tg)) mice that develop aggressive and lethal B cell lymphomas were made CD19 deficient (c-Myc(Tg)CD19⁻/⁻). Compared with c-Myc(Tg) and c-Myc(Tg)CD19⁺/⁻ littermates, the median life span of c-Myc(Tg)CD19⁻/⁻ mice was prolonged by 81-83% (p < 0.0001). c-Myc(Tg)CD19⁻/⁻ mice also lived 42% longer than c-Myc(Tg) littermates following lymphoma detection (p < 0.01). Tumor cells in c-Myc(Tg) and c-Myc(Tg)CD19⁻/⁻ mice were B lineage derived, had a similar phenotype with a large blastlike appearance, invaded multiple lymphoid tissues, and were lethal when adoptively transferred into normal recipient mice. Importantly, reduced lymphomagenesis in c-Myc(Tg)CD19⁻/⁻ mice was not due to reductions in early B cell numbers prior to disease onset. In mechanistic studies, constitutive c-Myc expression enhanced CD19 expression and phosphorylation on active sites. Reciprocally, CD19 expression in c-Myc(Tg) B cells enhanced c-Myc phosphorylation at regulatory sites, sustained higher c-Myc protein levels, and maintained a balance of cyclin D2 expression over that of cyclin D3. These findings define a new and novel c-Myc:CD19 regulatory loop that positively influences B cell transformation and lymphoma progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。