SENP1 inhibits aerobic glycolysis in Aβ1-42-incubated astrocytes by promoting PUM2 deSUMOylation

SENP1通过促进PUM2去SUMO化抑制Aβ1-42孵育的星形胶质细胞中的有氧糖酵解。

阅读:2
作者:Qianshuo Liu # ,Meixi Jiang # ,Zhengze Wang ,Jihong Meng ,Hui Jia ,Jing Li ,Jiacai Lin ,Libin Guo ,Lianbo Gao

Abstract

Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ1-42) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ1-42-exposed astrocytes. Functional assays including Ni2+-Nitrilotriacetic acid (NTA) agarose bead pull-down and co-immunoprecipitation (Co-IP) confirmed SENP1's role in actively deSUMOylating PUM2, thereby enhancing its stability and expression. The interaction between PUM2 and the 3' untranslated region (3'UTR) of NRF2 mRNA reduces NRF2 levels, subsequently diminishing the transcriptional activation of critical glycolytic enzymes, Hexokinase 1 (HK1) and Glucose Transporter 1 (GLUT1). These changes contribute to the observed reduction in glycolytic function in astrocytes, exacerbating neuronal apoptosis. Targeted interventions, such as knockdown of Senp1 or Pum2 or overexpression of NRF2 in APPswe/PSEN1dE9 (APP/PS1) transgenic mice, effectively increased HK1 and GLUT1 levels, decreased apoptosis, and alleviated cognitive impairment. These findings highlight the important roles of the SENP1/PUM2/NRF2 pathway in influencing glucose metabolism in astrocytes, presenting new potential therapeutic targets for AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。