Uncovering the Expression Pattern of the Costimulatory Receptors ICOS, 4-1BB, and OX-40 in Exhausted Peripheral and Tumor-Infiltrating Natural Killer Cells from Patients with Cervical Cancer

揭示宫颈癌患者耗竭的外周血和肿瘤浸润性自然杀伤细胞中共刺激受体ICOS、4-1BB和OX-40的表达模式

阅读:3
作者:Jose Manuel Rojas-Diaz ,Fabiola Solorzano-Ibarra ,Nadia Tatiana Garcia-Barrientos ,Ksenia Klimov-Kravtchenko ,Marcela Sofia Guitron-Aviña ,Jose Alfonso Cruz-Ramos ,Pablo Cesar Ortiz-Lazareno ,Pedro Ivan Urciaga-Gutierrez ,Miriam Ruth Bueno-Topete ,Mariel Garcia-Chagollan ,Jesse Haramati ,Susana Del Toro-Arreola

Abstract

Cervical cancer (CC) poses a significant health burden, particularly in low- and middle-income countries. NK cells play a crucial role against CC; however, they can become exhausted and lose their cytotoxic capacity. This work explores the expression of costimulatory receptors (ICOS, 4-1BB, OX-40) in exhausted NK cells from CC patients. Peripheral blood and tumor biopsies were collected, and flow cytometry was used to evaluate the expression of costimulatory receptors in exhausted NK cells. There is an increase of peripheral exhausted NK cells (PD-1+TIGIT+) in CC patients; this subpopulation has a selectively increased expression of the costimulatory receptors ICOS and 4-1BB. An exhausted population is also highly increased in tumor-infiltrating NK cells, and it shows a dramatically increased expression of the costimulatory receptors ICOS (>15×) and 4-1BB (>10×) compared to peripheral NK cells. The exhausted cells, both in the periphery and in the tumor infiltrating lymphocytes (TILs), are also more likely than non-exhausted NK cell populations (PD-1-TIGIT-) to express these costimulatory receptors; increases ranging from 2.0× ICOS, 2.4× 4-1BB, and 2.6× OX-40 in CD56dim PBMCs to 1.5× ICOS, 5× 4-1BB, and 10× OX-40 in TILs were found. Our study demonstrates for the first time the increased expression of the costimulatory receptors ICOS, 4-1BB, and OX-40 in peripheral CD56dim, CD56bright, and tumor-infiltrating NK cells in CC. Targeting these receptors for stimulation could reverse exhaustion and be a promising immunotherapy strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。